

A Fuzzing-Based Test-Creation Approach for Evaluating Digital TV Receivers via Transport Streams

Fabricio Izumi, **Eddie Filho**, Lucas Cordeiro, Orlewilson Maia, Romulo Fabricio, Bruno Farias, Aguinaldo Silva

eddie.filho@tpv-tech.com

TPV Technology 12th Aug 2024

Challenges on Digital TV systems

Misconfigured headend equipment

Incorrect data structures and protocols formats

Receiver malfunctions and field problems caused by incorrect information in Transport Streams

Robustness evaluation using grammar-based guided fuzzing

Goals

Test receivers under unforeseen conditions

Enhance operational reliability and robustness in commercial DTV platforms

TPV Terrestrial DTV System Architecture

TPV What happens?

Broadcasters send erroneous data

- Wrong data on transport level:
 - Wrong data in PSI/SI tables;
 - Wrong data in compressed media;
 - Wrong data in interactive applications.
- Who is responsible?
 - Broadcasters are the source;
 - However, ultimately, it is a receiver manufacturers' problem;
 - The solution regards enhanced robustness.
- Causes
 - They look like random events, combining incorrect information and the way software is developed;
 - As an insight, it resembles (guided) fuzzing;
 - Inconsistent encoding of audio and video streams.

Fidings

- Standards check if the structure is ok but not the associated data.
- The is no known methodology in literature to prepare receivers for real error scenarios
- Consequently, our proposal targets robustness testing, based on fuzzing, during development phases.

TPV Field-problem Analysis

Error Sources

- Media-related encoding data:
 - Wrong size information in H.264 packet headers;
 - Wrong audio format announced in tables.
- System-related:
 - Wrong clock references affecting media synchronization;
 - Intervals between tables (configuration) larger than recommended.
- Data-related:
 - Conditional access information transmitted in free-to-air channels;
 - Non-existent services;
 - Inconsistent encoding of audio and video streams;
 - Incorrect info for interactive applications (compressed?).

Symptons of failing receivers

- Video freezing or flickering.
- Frame skipping.

Image source: Adobe (https://t.ly/6LtUf)

- Abscence of audio.
- System crash.

TPV DTV-oriented Smart Fuzzer

- Our fuzzer should be:
 - Generation-based using system specifications;
 - Gray-box as analysis and usual implementations are known;
 - Coverage-based targeting entire subsystems;
 - Smart due to the use of known information.
- Additional aspects:
 - Inputs come from known field problems, fragile parts, and DTV standards;
 - Test cases are based on usual implementations and known processing chains;
 - TS processing problems appear on the standard outputs, tha is, audio and video.

TPV Fuzzing DTV-Signal Fields

- The field *stream_type* could be fuzzed to introduce disagreement between content and signalled encoding.
- Incorrect data can be captured by monitoring audio and video outputs.

Syntax	Bitwidth
TS_program_map_section() {	
table_id	8
section_syntax_indicator	1
.0.	1
reserved	2
section_length	12
program_number	16
reserved	2
version_number	5
current_next_indicator	1
section_number	8
last_section_number	8
reserved	3
PCR_PID	13
reserved	4
program_info_length	12
for (I = 0; I < N; I++) {	
descriptor()	
}	
for (I = 0; I < N1; I++) {	
stream_type	8
reserved	3
elementary_PID	13
reserved	4
FC info length	10

TPV Grammar Based on the MPEG-2 TS Format

```
program_number = 'original_network_id',
service_type,
service_number;
service_type = '01'|'10'|'11';
service_number = '001' |'010'|'011'|'100'
|'101'|'110'|'111';
```

Grammar for *program_number* field

```
component_descriptor = '01010000',
    '00000110',
    stream_content_ext,
    stream_content_and_component_type,
    component_tag,
    ISO_639_language_code;
    stream_content_ext = 4 * binary_digit;
    stream_content_and_component_type = '000100000000'
    | ('0000', component_type);
    component_type = 8 * binary_digit;
    binary_digit = '0'|'1'
```

Grammar for component_descriptor field

TPV Fuzzing Strategy

- To make the whole approach practical, we defined a test creation strategy.
- Error creation based on areas around field problems, sensitive data, and parameters configured in GUIs is performed with fuzzing.
- Error regions could be continuously expanded if the related random process continues.
- Such an evaluation system can be enhanced over time with new field problems, GUIs, and DTV enhancements.

TPV Example of Possible Configuration Error

• When evaluating the GUI of a commercial multiplexer, we can easily identify fragile spots.

PID Video	273
Video Stream Type	[0x01B] ITU-T Rec. H.264_ISO/IEC 14496-10 video V
PID Audio	274
Audio Stream Type	[0x011] ISO/IEC 14146-3 Audio MPEG-4 AAC (LATM-LOAS) V
PID PCR	273

TPV Fuzzing Tool

Image processing module

- Screen detection algorithm.
- Freezing and flickering detection:
 - Histograms;
 - Structural Similarity Index;
 - OpenCV framework.

Audio analysis module

- Amplitude verification.
- Frequency verification.
- ALSA library.

Test environment

TPV Screen Detection

- Traditional image processing techniques.
- Simple screen detection for segmenting the analysis area.

TPV Experimental Results

DTV Platforms Fuzzing

Evaluations on 7 commercial platforms.

Platform 5 was under development.

The other platforms are off-the-shelf ones.

The manufacturers represent 80% of the Brazilian DTV market.

Most issues are concentrated in PSI/SI and A/V.

Bug fixes in DTV receiver software impacting millions of users.

Enhancements to devices and transmission setups.

TPV Important Aspects

- Platforms 2, 3, 6 and 7 surprisingly presented fragile code, even being manufactured by companies with a long history in DTV.
- Platform 2 is a model from 2016, while platforms 6 and 7 were released in 2017, and, finally, Platform 3 was released in 2013.
- DTV receivers usually present a lifespan of at least 10 years.
- The lowest average failure rates regard interactive applications, which indicates a lot of development effort.

TPV Test Groups in Each Category

- PSI/SI:
 - Tables PAT, PMT, NIT, SDT, CAT and EIT, together with their respective descriptors;
 - Table repeat periods;
 - Correlated fields;
 - Services;
 - Media encoding declarations;
 - PID declarations;
 - Table section control data;
 - Virtual channels;
 - Synchronization data.

TPV Test Groups in Each Category

- A/V:
 - Video stream syntax;
 - Video stream syntax;
 - AAC stream elements;
 - LATM stream elements;
 - H.264 profiles and levels;
 - H.264 headers and parameter sets;
 - Audio specific elements (e.g. number of channels and sampling frequency);
 - H.264 SEI messages;
 - H.264 frame information;
 - Video specific elements (e.g. frame rate).

TPV Test Groups in Each Category

- Ginga:
 - DSM-CC syntax;
 - DSM-CC descriptors;
 - DSM-CC compression;
 - DSM-CC section control data;
 - Ginga application syntax;
 - Ginga APIs.

TPV Additional Comparison

- We have also compard only fuzzing engines: ours and Peach.
- We have built the Peach's input format for performing evalution regarding the program map table (PMT), with 95 sections of it.
- We have also created 95 TSs with our approach.
- Platforms 2 and 3 were evaluated: they are popular models from multinational manufacturers, presented many problems, and are provided by market leaders.

	The proposed methodology				Peach [39]			
	Total	Success	Fail	P. Failed (%)	Total	Success	Fail	P. Failed (%)
Platform 2	95	59	36	37 <mark>.</mark> 89%	95	75	20	21.05%
Platform 3	95	55	40	42.11%	95	82	13	13.68%

TPV Conclusion and Future Work

- Our work presents a **collection of real field problems** identified in DTV networks and outlines **a scheme for non-compliance insertion** that performs **grammar-based guided fuzzing**.
- The experimental results showed that our methodology is **effective on finding real problems** on comercial Digital TV platforms.
- In terms of fuzzing technique, we envision future work on applying machine learning algorithms that provide adaptability toward known fragile parts.

Thank you!

• Izumi, Fabrício; de Lima Filho, Eddie B.; Cordeiro, Lucas C.; Maia, Orlewilson; Fabrício, Rômulo; Farias, Bruno; Silva, Aguinaldo. A fuzzing-based test-creation approach for evaluating digital TV receivers via transport streams. Software Testing, Verification and Reliability, 2022.