Collaborators/funders:
PPGEE, PPGI - UFAM
APT / FM / S3 Research Groups
ARM Centre of Excellence
Centre for Digital Trust and Society
UKRI, EPSRC, EU Horizon and industrial partners

MANCHESTER

1824
The University of Manchester

Building Trustworthy Software and Al
Systems: Exploring Automated Testing,
Formal Verification, and Repair Strategies

@ Lucas C. Cordeiro

; lucas.cordeiro@manchester.ac.uk
\ https://ssviab.qgithub.io/lucasccordeiro/

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

How much could software errors cost
your business?

Poor software quality cost US companies $2.41 trillion in
2022, while the accumulated software Technical Debt (TD)
has grown to ~$1.52 trillion

- CcPSQ-$2.41T

Cybersecurity
Failures (incl.
data breaches)

TD relies on temporary easy-to-
Implement solutions to achieve short-
term results at the expense of
efficiency in the long run

Unsuccessful
Dev. Projects

Operational Failures
$260B

$1.81T

Finding & fixing defects
$607 B

: Legacy ,
N Systems s
. ”

$520B .
The cost of poor software quality C I S D
— in the US: A 2022 Report D .

‘onsortium for Information & Software Quality ™

Objective of this talk

Discuss automated testing, formal verification, and
repair technigues to establish a robust foundation
for building trustworthy software and Al systems

 Introduce a logic-based automated verification platform to find
and repair software vulnerabilities

« EXplain testing, verification, and repair techniques to build
trustworthy software and Al systems

« Develop an automated reasoning system for safeguarding
software and Al systems against vulnerabilities in an increasingly
digital and interconnected world

Research Questions

Given a program and a specification, can we
automatically verify that the program performs
as specified?

Can we leverage program analysis/repair to
discover and fix more software vulnerabilities
than existing state-of-the-art approaches?

Can we improve engineers' productivity to
find, understand, and fix software
vulnerabilities?

ESBMC: A Logic-based Verification Platform

Logic-based automated verification
for checking safety and liveness
properties in Al and software systems

) Software
Tiny ML YO Abstract Syntax
Tree (AST)
onnx2c/ | || C/C++/CHERI Scan clang
keras2c /CUDA Simplify External Memory Correctness
loops Libraries Model o Witness
i Scan Parallelization
JaXr;a/dlj(())it(ljln/ » Soot $ i L f Property holds
Controlflow | [5510 Symbolic |0 ification| SMT | Models
Graph » Execution e
Program . Conditions | Solver
Scan Generator Engine _
Solidity > Solidity ‘\ Property violated
A Violation
Caching / Witness
Scan _ _ Code _ CP Solver Abstrac@ Slioi g
Python » ast2json Instrumentation Interpretation ICIng l
Source code Large APACHE
> Language LICENSE
]]]]]] Models VERSION 2.0
Combines BMC, k-induction, abstract interpretation, CP/SMT solving l

towards correctness proof and bug hunting |
Root Cause Analysis /
www.esbmc.org Program Repair

Agenda

Automated Software Testing and Verification with the
ESBMC Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

Automated Reasoning System for Building Trustworthy SW
and Al Systems

SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

* Solverated programesing inguages
* Compiier opumizations using solvers

1,000,000 Constraints * Bo & Ogcimization

* Concolic Testing

* Program Anslysls
* Equivalence Checling
100,000 Constraints ey, e
* Bounded MC . . .
T unit propagation,
10,000 Constraints

conflict clauses and
non-chronological
backtracking

[,000 Constraints
1998 2001 2004 2007 2010

SAT Competition All Time Winners on SAT Competition 2022 Benchmarks

—&— kissat-mab-2021
Py - —&— kissat-mab-hywalk-2022
T —4— kissat-2020
—@— maple-lem-disc-cb-dl-v3-2019
maple-lem-dist-cb-2018
—»— maple-lem-dist-2017
—&— maple-comsps-drup-2016
—#—— abcdsat-2015
+—— lingeling-2014
—— lingeling-2013
—&— glucose-2012
150 . : & glucose-2011
& it T ——&— minisat-2008
e & - precosat-2009
~——+—— cryptominisat-2010
W satelite-gti-2005
minisat-2006
rsat-2007
berkmin-2003
—&— limmat-2002
chaff-2001

50 - Bl £ &— zchaff-2004

250

200

100

solved instances

—&— boehm-1992
—&—— grasp-1997

_— - > ———

0 1,000 2000 3,000 4,000 5,000

. . The SAT Museum.
tmle 1n Seconds Armin Biere and Mathias Fleury and Nils Froleyks and Marijn J.H. Heule.

In Proceedings 14th International. Workshop on Pragmatics of SAT (POS'23),

. . - - -) vol. 3545, CEUR Workshop Proceedings, pages 72-87, CEUR-WS.org 2023,
https: //cca.informatik.uni-freiburg.de /satmuseum [paper - bibtes - data - zencds - cen - workshop - procecdings |

https://cca.informatik.uni-freiburg.de/satmuseum/

https://cca.informatik.uni-freiburg.de/satmuseum/

Bounded Model Checking (BMC)

“never” happens

B MC R LR R R EREERRREER / In practice

k+1 still tractable completeness ¥
J, | threshold reached; >Ok

. | IS THERE no :
M’ S 5 ANY i k+1 intractable - > bound

ERROR yes -, fail
IN k .~ CT <=the maximum
STEPS? ---------------------------- number Of Ioop iterations

occurring in the program
Can the given property fail in k-steps?

I(So) A T(S0.S1) A .. A T(Sk.1.Sk) A (= P(Sp) V..vV= P(Sy))

Property fails Armin Biere, Alessandro Cimatti,

g Edmund M. Clarke, Yunshan
initial state k-steps in some step 7 Sibocod s
193-207

Software BMC

« program modeled as a state transition system int main() {
— state: pc and program variables e Exa=[2=](’))" X
— derived from control-flow graph f[i]=0;
eise
ali+2]=1;
assert(al[i+1]==1);

| 1-intaf2], i, x; |

| 2: if 1(x==0) then goto 7 }—l
T: assert

2
S X I =
A i

Software BMC

« program modeled as a state transition system
— state: pc and program variables
— derived from control-flow graph
— added assumptions/safety properties as extra nodes

= .
Arrays =— Baseline

T

Combinations Intervals

DeviceDrivers 0

ECA s
Hardware
Loops

ProductLines

0 10 20 30 40 50 60 70 80 90

Number of Unique Benchmarks Solved

Menezes, R., Manino, E., Shmarov, F., Aldughaim, M., de Freitas, R., Lucas C.
Cordeiro: Interval Analysis in Industrial-Scale BMC Software Verifiers: A Case Study.

int main() {

int a[2], i, x;

if (x==0)
ali]=0;

else
ali+2]=1;

assert(al[i+1]==1);

g

J

| 1-intaf2], i, x; |
¥

2: if 1(x==0) then goto 7 I—l
¥

|
| 3rassert1>=0 | | T-assert2 +i>=0
v N
| 4:assert1<2 | | 8 assert2 +1<2 I
v v
| 5 ali]=0; | | 9 afi+2] = 1 |
] I\
| 6: goto 10 H 10:assert 1 +1>=0 |
7
| M:assert 1 +1<2 |
v
‘12 assert a[i+1] == 1 |
¥
|
|

Software BMC

« program modeled as a state transition system
— state: pc and program variables
— derived from control-flow graph
— added assumptions/safety properties as extra nodes

» program unfolded up to given bounds

900 &
800 L\ —&— —incremental-bme
\ O —unwindset
700
600
Z 500
g
A 400
!
300 R
—
200 \u
100
D 1]
0 5 10 15 20 25 o0
k-step

Wu T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L.:
Verifying components of Arm(R) Confidential Computing
Architecture with ESBMC. SAS 2024 (to appear)

int main() {
int a[2], i, x;
if (x==0)
ali]=0;
else
ali+2]=1;
assert(al[i+1]==1);

s
| 1:intal2], i, x; |
¥

2. if 1(x==0) then goto 7 I—l
W

| 4:assert1<2 |

Software BMC

« program modeled as a state transition system int main() {

— state: pc and program variables :? Exaz[i]é)" X;

— derived from control-flow graph a[i]=0;

— added assumptions/safety properties as extra nodes ef[iz]:l;
. program unfolded up to given bounds assertalivtl==L)
« unfolded program optimized to reduce blow-up

— constant propagation/slicing \ ﬂ,

— forward substitutions/caching ~ crucial S

— unreachable code/pointer analysis J [—

v N

8 assert2 +1<2

]

| | 9 afi+2] = 1
I\
| 6: goto 10 H 10:assert 1 +1>=0

]

11 assert1+1<2

1<

‘ 12: assert a[i+1] == 1 |

1<

| 13: return nondet(int) |
¥

| 14: end function |

Software BMC

« program modeled as a state transition system
— state: pc and program variables
— derived from control-flow graph
— added assumptions/safety properties as extra nodes

» program unfolded up to given bounds

 unfolded program optimized to reduce blow-up
— constant propagation/slicing \
— forward substitutions/caching ~ crucial
— unreachable code/pointer analysis J

* front-end converts unrolled and
optimized program into SSA

int main() {
int a[2], i, x;
if (x==0)
ali]=0;
else
ali+2]=1;
assert(al[i+1]==1);

b
gl = Xl == 0
d, = do
a; = a, WITH [2+iy:=1]

a, =gy ?a;:a;
ty = a,[1+ip] ==

Software BMC

« program modeled as a state transition system int main() {

— state: pc and program variables :? Exaz[i]é)" X;

— derived from control-flow graph a[i]=0;

— added assumptions/safety properties as extra nodes ef[iz]:l;
. program unfolded up to given bounds assertalivtl==L)
« unfolded program optimized to reduce blow-up

— constant propagation/slicing \ ﬂ,

— forward substitutions/caching - crucial "9, = (%, =0)

— unreachable code/pointer analysis _ .. i::j:re(a”"’o)

Aa, = store(a,,2 +i,,1)
~a, =ite(g;,a,8;) |

* front-end converts unrolled and
optimized program into SSA

i, >0, <2
* extraction of constraints C and properties P P A2+'o>0A2+'o<2}

AL+, 20A1+i, <2

| Aselect(a,, i, +1)=1

Software BMC

« program modeled as a state transition system int main() {

— state: pc and program variables :? Exaz[i]é)" X;

— derived from control-flow graph a[i]=0;

— added assumptions/safety properties as extra nodes ef[iz]:l;
. program unfolded up to given bounds assertalivtl==L)
« unfolded program optimized to reduce blow-up

— constant propagation/slicing \ ﬂ,

— forward substitutions/caching - crucial "9, = (%, =0)

— unreachable code/pointer analysis _ .. i::j:re(a”"’o)

Aa, = store(a,,2 +i,,1)
| AQ, =ite(gy,a,a;) |

* front-end converts unrolled and
optimized program into SSA

i, >0, <2
* extraction of constraints C and properties P P A2+'o>0A2+'o<2}

AL+, 20A1+i, <2

— specific to selected SMT solver, uses theories | Aselect(a, iy +1)=1

Software BMC

« program modeled as a state transition system int main() {
— state: pc and program variables A
— derived from control-flow graph f[i]=0;
. . eise
— added assumptions/safety properties as extra nodes ali+2]=1;
» program unfolded up to given bounds }assert(a['“]:l);
 unfolded program optimized to reduce blow-up
— constant propagation/slicing \ ﬂ,
— forward substitutions/caching ~ crucial g,:= (%, =0)
— unreachable code/pointer analysis .. 8= Store(@ iy)
=|Ad, =8,
- front-end converts unrolled and o2
optimized program into SSA o '
lhb =201, <2
 extraction of constraints C and properties P poo| N300 21 <2
— specific to selected SMT solver, uses theories rselect(ay i, +1)-1
® Sat|Sf|ab|I|ty CheCk Of C N\ —|P Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)

Intl. Software Verification Competition
(SV-Comp 2024)

« SV-COMP 2024, 30300 verification tasks, max. score: 49097
CBMC

mulative scora

Verification of the Overall Category

From Floating-Point Programs to Neural

Network Implementations
« Known ground truth, width (1-1024 neurons), depth (1-4 layers), feedforward &

recurrent, 8 activation functions
r ?
== //)
= 7) |

J
{ ,-ALV/
. T A — T
e ‘Eﬁ‘:—_—‘-_—' v I
-200 200 400 500
Manino, E. et al.: NeuroCodeBench: a Cumulaiive score

plain C neural network benchmark for

Software verification. In AERITS 2023 Verification of the ReachSafety-Floats Category

* Use Clang tooling infrastructure
Fuse BM C V4 * Employ three engines in its reachability

analysis: one BMC and two fuzzing engines
Framework

* Use a tracer to coordinate the various engines

Analysis and Injection Test-Generation

AFL Selel-clive BMC
: Goal’s Graph concolic fuzzer
Analyze & Inject p

Instrumented | C Code

BMC/AFL

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

‘ C Code ‘H
Property \

Test-cases

Tracer

Import seeds
Goals Covered Array

Seeds) New seeds

Competition on Software Testing 2024
Results of the Overall Category

T
CEfUZT — ' 1
CoVeriTest e——— i‘ I
10000 = FDSE —— LT 4T
Fizzer !\ b
FUSEBMC =i] L
FuSeBMC-Al —p—] L
HybridTiger S iI|l I
B000 = KLEE s in I
KLEEF =i <
o Legion/SymC e efie— !_ 9
I PRTast)
pa soan = Symbiotic ik T
5 Tracery, e g 30
E Tracary-WP ——ple— !. b o
z UTestGan !I|l '
= ! oo
5 ol WASP-D el :
1
.)
2000 = i -
-
ok
o 1000 2000 3000 40030 5000 5000 TOoo

Cumulative score

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in
Cover-Branches, and 1st place in Overall

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340 https://test-comp.sosy-lab.org/2024/

https://test-comp.sosy-lab.org/2024/

Ethereum Consensus Specifications

« Consensus protocol dictates how the participants in Ethereum agree
on the validity of transactions and the system’s state

« Git repository with Markdown documents describing specifications
 |nfrastructure to generate Python libraries from Markdown

& Watch 247 ~ Y Fork 862 - v Star 3.4k -
Ethereum Proof-of-Stake Consensus Specifications
Contributors 148

To learn more about proof-of-stake and sharding, see the PoS documentation, sharding documentation and the

research compendium. l * reS e ®
B}
et
— B
,_‘)

This repository hosts the current Ethereum proof-of-stake specifications. Discussions about design rationale and
proposed changes can be brought up and discussed as issues. Solidified, agreed-upon changes to the spec can b

as an be A s Pay’ £
made through pull requests. s il & —e

+ 134 contributors

Markdown

consensus-specs / specs / phase0 / beacon-chain.md
Preview | Code Blame 1939 lines (1617 loc) - 71.4 KB
Math

integer_squareroot

ESBMC-Python Benchmark

def integer_squarercot(n: uint64) -> uint64:

Return the largest integer
Xx=n
y=(x+1) // 2
while y < x:
x =Y
y=(x+n//x) /2
return x

def xor(bytes_1: Bytes32, bytes_ 2:

Ethereum Consensus Specification

x°° such that "~ 'x**2 <=n

Bytes3z) -> Bytes32:

Return the exclusive-or of two 32-byte strings.

return Bytes32(a " b for a,

b in zip(bytes_1,

bytes_2))

mainnet.py X

eth2spec Python Library Python Application

(n: uint64) -> uint64:

spec.bellatri
spec.utils.ssz.s ping (uint64)

: 25 ':I
inte

zip(bytes 1, by

> uint64:

uint64(int.from b a, ENDIANNESS))

Verification Output

Handle integer_squareroot bound case #3600

Iy Sl hwwhww merged 3 commits into dev from integer_squareroot (0] 2 weeks ago

) Conversation 4 -o- Commits 3) Checks 15 [#) Files changed 5

hwwhww commented 2 weeks ago - edited ~ Contributor

Credits to the University of Manchester Bounded Model Checking (BMC) project team: Bruno Farias, Youcheng Sun, and Lucas
C. Cordeiro for reporting this issue! ., 12¢

This team is an Ethereum Foundation ESP "Bounded Model Checking for Verifying and Testing Ethereum Consensus Specifications
(FY22-0751)" project grantee. They used ESBMC model checker to find this issue.

Description

integer_squareroot raises ValueError exception when n is maxint of uints4 ,ie., 2**64 - 1.

However, we only use integer_squarercot in

1. integer squareroot(total balance)

2. integer squareroot(5LOTS_PER_EPOCH)

With the current Ether total supply + EIP-1559, it's unlikely to hit the overflow bound in a very long time. (&)

That said, it should be fixed to return the expected value.

WolfMQTT Verification

« wWoIfMQTT library is a client implementation of the MQTT protocol written
In C for IoT devices

Ft’w%c«ﬂit thl, th2;
static MQTTCtx mgttCtx;

S ub S C r ibe t a S k TM»:L~W~ (&t:ﬂﬁ, suk?scribeitask, smgttCtx))

pthread create(&th2, waitMessage task, &mqttCtX))}

and wa l tMe SS age_t as]{ are static void *subscribe task(xclient) {

called through different threads
accessing packet ret, L i waitMessage_task it cciin
causing a data race Iin
MgttCl ient_WaitType static int MqttClient WaitType “client,

*packet obj,

wailt type wait packet id timeout ms
{
Here is where the rc :(rct__ﬂ([);{ sclient->lockClient
data race might MqttClient_Resplist_Find(client,

(MgttPacketType) walt _type,

happen! Unprotected ;gigagggﬁigggi&ggjgﬁRTSm> {
pOIﬂter rc = pendresp- packet ret;

Unprotected
pointer for the
status code

WolfMQTT Verification

MQTT Client

MQTT Client

After fixing the

concurrency
vulnerability

Sharing buffer
between clients

Buffer ACK

ACK 3

4

Data race might
happen if the broker
sends the status code

MQTT Broker

MQTT Client

To solve it they copied
the code status into
different buffers

D . ACK 3

Buftter

ACK

Ter

4

MQTT Broker

Bug Report

Fixes for multi-threading issues #209

b Cl embhorn me from dgarske:m 3 Jun 2021
) Conversation 2 -o- Commits 1 E C Files changed 4
0 dgarske commer ontriutor | () +++ Reviewers
lygstate
1. The client lock is needed earlier to protect the "reset the packet state”.
2 . ” bh
2. The subscribe ack was using an unprotected pointer to response code list. Now it makes a copy of those codes. 0 ot
3. Add protection to multi-thread example "stop” variable.
Thanks to Fatimah Aljaafari (@fatimahkj) for the report. Assignees
ZD 12379 and PR () Data race at function MqttClient_WaitType #198 0 embhorn
Fixes for three multi-thread issues: °= X7 d
Eh 0 Labels

None vet

rom embhorn 15 months

® @ doarske requ

Projects

2 @ doarske i embhorn on 2 Jun 2021

Milestone

https://qithub.com/wolfSSL/wolfMOQTT

¢> Code ~

+74 -48 EEEN

https://github.com/wolfSSL/wolfMQTT

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

Realm Management Monitor (RMM) Realm state Non-secure state Secure state
-- Provides services to Host and Realm

- Contains no policy ELO
- Performs no dynamic memory allocation Secure

Service

-- Realm Management Interface (RMlI) EL1
- Secure Monitor Call Calling Convention
(SMCCQC) interface called by Host
- Create/destroy Realms EL2 X Hypervisor
- Manage Realm memory, manipulating
stage 2 translation tables EL3
- Context switch between Realm VCPUs Root state

+ Realm Services Interface (RSI)

- SMCCC interface called by Realm
- Measurement and attestation
- Handshakes involved in some

memOry management ﬂOWS Wou, T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L. Verifying components
of Arm(R) Confidential Computing Architecture with ESBMC. In SAS 2024 (to

appear)

Arm CCA is an architecture that provides Protected
Execution Environments called Realms

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

-- The specification document?! is in the style of:

- rules-based writing

RrmgsL When the state of a Granule has transitioned from P to DELEGATED and then to any other state, any content
associated with P has been wiped.

- pre/post-condition pairs.

D3.2.5 RMI_G RANULE_DELEGATE (—— from the left column)
gran_bound pre: !PaIsDelegable(addr)

post: ResultEqual(result,RMI_ERROR_INPUT)
gran_state pre: Granule(addr).state != UNDELEGATED

Delegates a Granule.

D3.2.5.1 Interface

D3.2.5.1.2 Input Values post: ResultEqual(result,RMI_ERROR_INPUT)
;G 1 ddr) . = NS
Name Resister Field Type Description gran_pas pre ranule(addr) .pas
post: ResultEqual(result,RMI_ERROR_INPUT)
fid X0 [63:0] UInt64 Command FID
addr X1 [63:0] Address PA of the target Granule D3.2.5.3 Success conditions
D3.2.5.1.3 Output Values
ID Post-condition
Name Resister Field Type Description gran_state Granule(addr).state == DELEGATED
result X0 [63:0] ReturnCode Command return status gran_pas Granule(addr).pas == REALM

D3.2.5.2 Failure conditions .
D3.2.5.4 Footprint

ID Condition
gran_align pre: !AddrIsGranuleAligned(addr) D Value
post: ResultEqual (result,RMI_ERROR_INPUT) gran_state Granule(addr) .state

(continued in the right column) gran_pas Granule(addr) .pas

-- The document is generated from a machine-readable specification (MRS).

1 https://developer.arm.com/documentation/den0137/latest, the examples in this slide are taken when the paper was drafted.

https://developer.arm.com/documentation/den0137/latest

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

#include <assert.h>
extern int nondet int();
int main() {
int m = nondet int();
int *n = &m;
if ((unsigned long)n >= (unsigned long) (-4095))
assert ((unsigned int) (-1 * (long)n) < 6);
int a = -2048;
if ((unsigned long)a >= (unsigned long) (-4095))
assert ((unsigned int) (-1 * (long)a) < 6);

Test_benchmarks

. tautschnig commented on Jan 16 Collaborator

In C, pointer-to-integer conversion is implementation-defined behaviour. That should give CBMC the freedom to choose an
implementation where the condition (unsigned longin »= (unsigned long)(-4835) never evaluates to true.

It is. however, also right to argue that CBMC should seek to model all possible implementations. The peinter-to-integer conversion
in CBMC does not currently fulfil this expectation, but we will hopefully fix this in future.

@

https://github.com/diffblue/cbmc/issues/8161

Wu, T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L., Verifying components of
Arm® Confidential Computing Architecture with ESBMC. In SAS 2024 (to appear)

https://github.com/diffblue/cbmc/issues/8161

Agenda

Automated Software Testing and Verification with the
ESBMC Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

|

Automated Reasoning System for Building Trustworthy SW
and Al Systems

Towards Self-Healing Software via Large
Language Models and Formal Verification

o __ (ESBMC-AI Framework | P N

p L \
/ .. Formal verification of the
{ Efficient Bouned Model Checker (ESBMC)]7 . e oo \

N N

N -

_| ANSIC |

|
|
|
|
: > S8y > —
| Clang AST GOTO Symbqllc SMT
| compiler converter converter execution solver Eormal MANIANAN
(I) P\ L J _ Y, _ Y _ J J) Verification | SUCCESSFULL
| - - :
C source I)) ‘
code : { LLM module J { Counterexample] } | «
! X\) | </>
- ' / T / 1
A C source code that may | <> : </> 7
or may not be vulnerable T %& + | \iclated l—[VER;::EQEION J : Safe C code
| L)
| Suggested C LLM Vulnerable C e 3 :
code source)
1\ \—/ —_— J If a property violation is I
\ N found, it is fed to an LLM | /
N 4 with the original C code
S~ C code suggested by the - d
~ — - LLMisverifiedagainby — - -~ - - - - - - - - - - - - - - - - — - — - ——— —— -
BMC.

Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software Security: Towards
Self-Healing Software via Large Language Models and Formal Verification. CORR abs/2305.14752 (2023)

Do Neutral Prompts Produce Insecure Code?
FormAlI-v2 Dataset: Labelling Vulnerabilities in
Code Generated by Large Language Models

- 1. Rk
Norbert Tihanvil™,
Ridhi Jain', Lucas C. Cordeiro®
! Technology Inmovation Institute (TII), Abu Dhabi, UAE.
2 University of Oslo, Oslo, Norway.
3University of Manchester, Manchester, UK.

Tamas Bisztray?, Mohamed Amine Ferrag!,

Datasets pjo_yyl| Draper ~ SARD | Juliet Devign | REVEAL Di‘:’:lr €| FormAT F°$”

Specs

Language C/C++| C/C++| Multi Multi C C/CH++| C/C++ C C
S S
Source RW e S RW RW W Al AT
Dataset size 189k 1,274k 101k 106k 28k 23k 379k 112k 150k
Vu]—.. 100% 5.62% 100% 100% 46.05% 9.85% 7.02% 51.24% 61%
Snippets
Maltd. x v x x X x x v v
Vulns.
Compilable x X v v x x X v v
Granularity Func Func Prog Prog Func Func Func Prog Prog
Class. Type g\?{,% CWE CWE CWE CVE CVE CWE CWE CWE
Avg. LOC. 30 29 114 125 112 32 44 79 82
Labelling _
—— P S B/S/M B M P P F F
Legend:

Multi: Multi-Language Dataset, RW: Real World, Syn: Synthetic, AIL: Al-generated,
Funec: Function level granularity, Prog: Program level granularity,
CVE: Common Vulnerabilities and Exposures, CWE: Common Weakness Enumeration,
P: GitHub Commits Patching a Vulnerability, S: Static Analyzer,
B: By Design Vulnerable, F: Formal Verification with ESBMC, M: Manual Labeling

https://arxiv.org/abs/2404.18353

Type Style
i e ,
ctrend st L
e crecke’ Tebl® e rect 1S Torvags
Password Professional mp\e*
oo
Gfa":won management Prompt oo
Rap{eﬁﬂ cryption template Funny fut ure-P!
e
(B

Gemini Mistral Gemma Llama2
e Ll Llama 13B Pro 1.0 7B 7B 13B
p. l p p.
78k 1k) | T2k 12k 40k 10k | 4Tk [Bk)
| ‘] | I \ Compilable
C Program
-4 -"—-"—-"="="="="="="="="="="==-"= samples with
h 4 50+ lines
(0 @cyclmaﬂc
| © Complnty
alyzer
ESBMC \ (Lizard) /
7.5 _T1
<> Verification
. Succesful
@ p Select \ h s
Optimal \ , Verification Failed
\, Parameters for / Labelling [a Property violation
\ ESBMC /
FormAl-v2
180N < ‘ <> Unknown‘

Network Management, Table Games, Wi-Fi Signal Strength Analyzer, QR code
reader, Image Steganography, Pixel Art Generator, Scientific Calculator
Implementation, and Encryption, string manipulation, etc.

https://arxiv.org/abs/2404.18353

successful Trials (%)

ESBMC-AI Fix Code Mode (FCM) Performance

Successful Trials in Each Category

: 2 5 |+ Built the formAl dataset
- . : with 112k C programs
o 5 E E g & ¢ ¢ |* Randomly selected 1k
= ¢ 5 . i g 3 { £ vulnerable C programs
s{ § 8 ¢ : s : : ¢ ° |+ Repaired 35.5% programs
: AT T S - Lowest category was
20f : £ 2 % P38 os arithmetic overflow (~5%)
TR A I A » Highest category was array
2 & A out of bounds (~36%)
T 5 i L% o3 Generic prompts (room for
. Pof 5 0° improvement)
51 i Tihanyi et al.: The FormAI Dataset: Generative Al in
Software Security through the Lens of Formal
Verification. PROMISE 2023: 33-43
0

ESBMC-AI Fix Code Mode (FCM) Performance

Fix Code Attempts (With Failure Case)

 Bullt the formAIl dataset

600 - with 112k C programs
 Randomly selected 1k
s vulnerable C programs

* Repaired 35.5% programs

* Lowest category was

ki arithmetic overflow (~5%)

* Highest category was array

200 - out of bounds (~36%)

« Generic prompts (room for
Improvement)

400 A

Count

100 +

Tihanyi et al.: The FormAI Dataset: Generative Al in
Software Security through the Lens of Formal
Verification. PROMISE 2023: 33-43

4 (Failed) 5

© -
s =
N
w

Retries

Counts

ESBMC-AI Fix Code Mode (FCM)

Lines of Code Deltas

102 1

101]

107 1

=207
-157
-132

FCM LoC Delta O Examples

) FormAI_31585.c

1do
< //FormAI DATASET v1.0 Category: File Encyptor ; Style: satisfied

27a27]
> fclose(file_ptr); // added line

FormAI_80614.c

1do
< //FormAI DATASET v1.0 Category: Palindrome Checker ; Style: accurate

3a3
> #include <stdlib.h>

10c10
scanf("%s", &str);

a limit to the input size to prevent buffer overflow

scanf("%99s", str); // Add

SecureFalcon: Are We There Yet iIn Automated
Software Vulnerability Detection with LLMs?

OCollecﬂon data

S YL

O
! Sec reFalcol
Architecture
| Falcon 40b : 121M

e Fine-tuning for Classification Tasks

CWE-20, CWE-78, CWE-119, CWE-
120, CWE-121, CWE-122, CWE-190,
CWE-476 CWE-762, CWE-787, and

? 5 !9
dataset Datasel
classification Muilti classification

SySeVR dataset (2021)
Draper VDISC dataset (2018)
Bigvul dataset (2020)
Diversevul dataset (2023)
SARD Juliet dataset

ReVeal dataset (2021)

M— Embedding Feed Forward SoftM
Trainin] Tes T + \
dataset | | gataset At n“M
Tokenizati
Q« s T Feed Forward
—_— Ifitting «<— . [Source +
-— > Code
§ Attention
SecureFal Inf

Vulnerable Code Detection Rate

Vulnerable Code Detection Rate Comparison

—— High Detection rate using BMC methods
—— Lower Detection rate using LLM

A

Training|

Phase

Ohour 1hours 2hours 3hours 4 hours 5hours 6 hours
Time

Train LLMs on known patterns (e.g., CWES) to catch
bugs in real-time as code is being written in an IDE

https://arxiv.org/abs/2307.06616

https://arxiv.org/abs/2307.06616

Agenda

Automated Software Testing and Verification with the
ESBMC Framework

Towards Self-Healing Software via Large Language Models
and Formal Verification

Automated Reasoning System for Building Trustworthy SW
and Al Systems

|

Vision: Automated Reasoning System for
Building Trustworthy SW and Al Systems

Develop an automated reasoning system for safeguarding
software and Al systems against vulnerabillities in an
Increasingly digital and interconnected world

Code inspection
Static Analysis
Dynamic Analysis

{ - Fault Localization
Al code Fault Repair
/ 4 Automated A
/ N Reasoning System .
SoLes (ARS): Searching, Detection Vulnerability Correction
code . classification
N J learning, memory
—— N and parallelization Severity
Binary < / Likelihood
___Code Remediation cost
Explainable { Properties }
Behavior Correctness

Robustness

European
Commission

The European Commission recognized our code
verification framework as an outstanding
innovation

* “We believe that your organisation's inclusion
In this Initiative could open up new
opportunities for you to partner with business
or academic organisations and trigger interest
from potential customers or investors in your |
inhovations” e — Snovation Readiness ———————— .

 |Innovation Title: ELEGANT code verification
mechanisms;

« Market Maturity of the Innovation: Exploring
« Market Creation Potential of the innovation: High

ation Management —

(Real) Impact: Students and Contributors

5 PhD theses
e 30+ MSc dissertations
« 30+ final-year projects

* GitHub:
= 33 contributors
= 23,419 commits
= 272 stars
= 01 forks
= 4.3k downloads

https://qgithub.com/esbmc/esbmc

https://github.com/esbmc/esbmc

Impact: Awards and Industrial Deployment

Distinguished Paper Award at ICSE'11

Best Paper Award at SBESC'15

Most Influential Paper Award at ASE'23

Best Tool Paper Award at SBSeg'23

« 35 awards from intl. competitions on SW verification/testing at TACAS/FASE
» Bug Finding and Code Coverage .

* Intel deploys ESBMC Iin production as one of its verification engines for

verifying firmware in C
 Nokia and ARM have found security vulnerabilities in C/C++ software

* Funded by the government (EPSRC, British Council, Royal Society, CAPES,
CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

* Potential spin-out about building trustworthy software and Al systems

Acknowledgements

EPSRC s, ENCNPg

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
eeeeeeeeeeeeeee

®OBRITISH =
@ ®® COUNCIL |nte|®

CAPES \‘,eThereum

@ FLE>.TRONICS
motorola NOKIA

arm

	Slide 1
	Slide 2: How much could software errors cost your business?
	Slide 3: Objective of this talk
	Slide 4: Research Questions
	Slide 5: ESBMC: A Logic-based Verification Platform
	Slide 6: Agenda
	Slide 7: SAT solving as enabling technology
	Slide 8
	Slide 9: Bounded Model Checking (BMC)
	Slide 10: Software BMC
	Slide 11: Software BMC
	Slide 12: Software BMC
	Slide 13: Software BMC
	Slide 14: Software BMC
	Slide 15: Software BMC
	Slide 16: Software BMC
	Slide 17: Software BMC
	Slide 18: Intl. Software Verification Competition (SV-Comp 2024)
	Slide 19: From Floating-Point Programs to Neural Network Implementations
	Slide 20: FuSeBMC v4 Framework
	Slide 21: Competition on Software Testing 2024: Results of the Overall Category
	Slide 22: Ethereum Consensus Specifications
	Slide 23: ESBMC-Python Benchmark
	Slide 24
	Slide 25: WolfMQTT Verification
	Slide 26: WolfMQTT Verification
	Slide 27: Bug Report
	Slide 28
	Slide 29: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 30: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 31: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 32: Agenda
	Slide 33
	Slide 34
	Slide 35: ESBMC-AI Fix Code Mode (FCM) Performance
	Slide 36: ESBMC-AI Fix Code Mode (FCM) Performance
	Slide 37: ESBMC-AI Fix Code Mode (FCM)
	Slide 38: FCM LoC Delta 0 Examples
	Slide 39
	Slide 40: Agenda
	Slide 41: Vision: Automated Reasoning System for Building Trustworthy SW and AI Systems
	Slide 42: The European Commission recognized our code verification framework as an outstanding innovation
	Slide 43: (Real) Impact: Students and Contributors
	Slide 44: Impact: Awards and Industrial Deployment
	Slide 45: Acknowledgements

