
Building Trustworthy Software and AI
Systems: Exploring Automated Testing,

Formal Verification, and Repair Strategies

Lucas C. Cordeiro

lucas.cordeiro@manchester.ac.uk

https://ssvlab.github.io/lucasccordeiro/

Collaborators/funders:

PPGEE, PPGI – UFAM

APT / FM / S3 Research Groups

ARM Centre of Excellence

Centre for Digital Trust and Society

UKRI, EPSRC, EU Horizon and industrial partners

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

How much could software errors cost

your business?

Poor software quality cost US companies $2.41 trillion in

2022, while the accumulated software Technical Debt (TD)

has grown to ~$1.52 trillion

TD relies on temporary easy-to-

implement solutions to achieve short-

term results at the expense of

efficiency in the long run

The cost of poor software quality

in the US: A 2022 Report

Objective of this talk

• Introduce a logic-based automated verification platform to find

and repair software vulnerabilities

• Explain testing, verification, and repair techniques to build

trustworthy software and AI systems

• Develop an automated reasoning system for safeguarding

software and AI systems against vulnerabilities in an increasingly

digital and interconnected world

Discuss automated testing, formal verification, and

repair techniques to establish a robust foundation

for building trustworthy software and AI systems

Can we leverage program analysis/repair to

discover and fix more software vulnerabilities
than existing state-of-the-art approaches?

Research Questions

Given a program and a specification, can we

automatically verify that the program performs
as specified?

Can we improve engineers' productivity to

find, understand, and fix software
vulnerabilities?

ESBMC: A Logic-based Verification Platform

Logic-based automated verification

for checking safety and liveness

properties in AI and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification

Conditions

Abstract Syntax

Tree (AST)
Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/CHERI

/CUDA

Control-flow

Graph

Generator

clang
Memory

Model

External

Libraries
Correctness

Witness

Violation

Witness

ScanJava/Kotlin/

Android
Soot

Scan
Solidity Solidity

Scan
Python ast2json

Abstract

Interpretation

Code

Instrumentation
CP Solver

Large

Language

Models

Root Cause Analysis /

Program Repair

Source code

Models

Parallelization

Software

onnx2c /

keras2c

Tiny ML

APACHE

LICENSE

VERSION 2.0

Caching /

Slicing

Simplify

loops

Agenda

• Automated Software Testing and Verification with the

ESBMC Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Automated Reasoning System for Building Trustworthy SW

and AI Systems

SAT solving as enabling technology

unit propagation,

conflict clauses and

non-chronological

backtracking

https://cca.informatik.uni-freiburg.de/satmuseum/

https://cca.informatik.uni-freiburg.de/satmuseum/

Bounded Model Checking (BMC)

IS THERE

ANY

ERROR

IN k

STEPS?

completeness

threshold reached

k+1 still tractable

k+1 intractable

no

yes

M, S
ok

fail

bound

BMC:
“never” happens

in practice

Armin Biere, Alessandro Cimatti,

Edmund M. Clarke, Yunshan

Zhu: Symbolic Model Checking

without BDDs. TACAS 1999:

193-207

CT <= the maximum

number of loop iterations

occurring in the program

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Menezes, R., Manino, E., Shmarov, F., Aldughaim, M., de Freitas, R., Lucas C.

Cordeiro: Interval Analysis in Industrial-Scale BMC Software Verifiers: A Case Study.

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Wu T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L.:

Verifying components of Arm(R) Confidential Computing

Architecture with ESBMC. SAS 2024 (to appear)

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

crucial

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

crucial

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Software BMC

• program modeled as a state transition system

– state: pc and program variables

– derived from control-flow graph

– added assumptions/safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)

int main() {
int a[2], i, x;
if (x==0)
a[i]=0;
else
a[i+2]=1;
assert(a[i+1]==1);

}

Intl. Software Verification Competition
(SV-Comp 2024)

• SV-COMP 2024, 30300 verification tasks, max. score: 49097

Verification of the Overall Category

ESBMCCBMC 2LS

UAutomizer

Symbiotic

From Floating-Point Programs to Neural
Network Implementations

Verification of the ReachSafety-Floats Category

ESBMC

• Known ground truth, width (1-1024 neurons), depth (1-4 layers), feedforward &

recurrent, 8 activation functions

Manino, E. et al.: NeuroCodeBench: a

plain C neural network benchmark for

software verification. In AFRiTS 2023

FuSeBMC v4
Framework

• Use Clang tooling infrastructure

• Employ three engines in its reachability
analysis: one BMC and two fuzzing engines

• Use a tracer to coordinate the various engines

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

Competition on Software Testing 2024:
Results of the Overall Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2024/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

FuSeBMC

https://test-comp.sosy-lab.org/2024/

• Consensus protocol dictates how the participants in Ethereum agree

on the validity of transactions and the system’s state

• Git repository with Markdown documents describing specifications

• Infrastructure to generate Python libraries from Markdown

Ethereum Consensus Specifications

Ethereum Consensus Specification

Markdown eth2spec Python Library Python Application

ESBMC

Verification Output

ESBMC-Python Benchmark

• wolfMQTT library is a client implementation of the MQTT protocol written

in C for IoT devices

Int main(){

Pthread_t th1, th2;

static MQTTCtx mqttCtx;

pthread_create(&th1, subscribe_task, &mqttCtx))

pthread_create(&th2, waitMessage_task, &mqttCtx))}

static void *subscribe_task(void *client){

.....

MqttClient_WaitType(client,msg,MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static void *waitMessage_task(void *client){

…

MqttClient_WaitType(client, msg, MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static int MqttClient_WaitType(MqttClient *client,

void *packet_obj,

byte wait_type, word16 wait_packet_id, int timeout_ms)

{

.....

rc = wm_SemLock(&client->lockClient);

if (rc == 0) {

if (MqttClient_RespList_Find(client,

(MqttPacketType)wait_type,

wait_packet_id, &pendResp)) {

if (pendResp->packetDone) {

rc = pendResp->packet_ret;
.....}

subscribe_task

and waitMessage_task are

called through different threads
accessing packet_ret,

causing a data race in
MqttClient_WaitType

Here is where the

data race might

happen! Unprotected

pointer

WolfMQTT Verification

WolfMQTT Verification

Buffer
ACK

ACK

1

2

3

4

Sharing buffer

between clients

Unprotected

pointer for the

status code

Data race might

happen if the broker

sends the status code

Buffer ACK

ACK

1

2

3

4
Buffer

To solve it they copied
the code status into
different buffers

After fixing the

concurrency

vulnerability

Bug Report

https://github.com/wolfSSL/wolfMQTT

https://github.com/wolfSSL/wolfMQTT

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

Realm Management Monitor (RMM)

Provides services to Host and Realm
• Contains no policy

• Performs no dynamic memory allocation

Realm Management Interface (RMI)
• Secure Monitor Call Calling Convention

(SMCCC) interface called by Host

• Create/destroy Realms

• Manage Realm memory, manipulating

stage 2 translation tables

• Context switch between Realm VCPUs

Realm Services Interface (RSI)
• SMCCC interface called by Realm

• Measurement and attestation

• Handshakes involved in some

memory management flows

Non-secure state

SPM

TOS

T
A

Secure state

Secure
Service

Realm state

HypervisorRMM

Realm

Kernel

App App

Monitor

T
A

RMI

RSI

EL3

EL1

EL0

EL2

VM VM

Root state

Hardware

Arm CCA is an architecture that provides Protected

Execution Environments called Realms

Wu, T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L. Verifying components
of Arm(R) Confidential Computing Architecture with ESBMC. In SAS 2024 (to

appear)

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

The specification document1 is in the style of:
• rules-based writing

• pre/post-condition pairs.

The document is generated from a machine-readable specification (MRS).

1 https://developer.arm.com/documentation/den0137/latest, the examples in this slide are taken when the paper was drafted.

https://developer.arm.com/documentation/den0137/latest

Verifying Components of Arm® Confidential
Computing Architecture with ESBMC

Test_benchmarks esbmc
multi

cbmc
multi

RMI_REC_DESTROY 20 20

RMI_GRANULE_DELEGATE safe safe

RMI_GRANULE_UNDELEGATE 1 1

RMI_REALM_ACTIVATE 3 safe

RMI_REALM_DESTROY 15 1

RMI_REC_AUX_COUNT 1 1

RMI_FEATURES safe safe

RMI_DATA_DESTROY >=24 22

#include <assert.h>

extern int nondet_int();

int main() {

int m = nondet_int();

int *n = &m;

if((unsigned long)n >= (unsigned long)(-4095))

assert((unsigned int)(-1 * (long)n) < 6);

int a = -2048;

if((unsigned long)a >= (unsigned long)(-4095))

assert((unsigned int)(-1 * (long)a) < 6);

}

https://github.com/diffblue/cbmc/issues/8161

Wu, T., Xiong, S., Manino, E., Stockwell, G., Cordeiro, L., Verifying components of
Arm® Confidential Computing Architecture with ESBMC. In SAS 2024 (to appear)

https://github.com/diffblue/cbmc/issues/8161

Agenda

• Automated Software Testing and Verification with the

ESBMC Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Automated Reasoning System for Building Trustworthy SW

and AI Systems

Towards Self-Healing Software via Large

Language Models and Formal Verification

Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software Security: Towards

Self-Healing Software via Large Language Models and Formal Verification. CoRR abs/2305.14752 (2023)

Network Management, Table Games, Wi-Fi Signal Strength Analyzer, QR code

reader, Image Steganography, Pixel Art Generator, Scientific Calculator

Implementation, and Encryption, string manipulation, etc.https://arxiv.org/abs/2404.18353

https://arxiv.org/abs/2404.18353

ESBMC-AI Fix Code Mode (FCM) Performance

• Built the formAI dataset

with 112k C programs

• Randomly selected 1k

vulnerable C programs

• Repaired 35.5% programs

• Lowest category was

arithmetic overflow (~5%)

• Highest category was array

out of bounds (~36%)

• Generic prompts (room for

improvement)

Tihanyi et al.: The FormAI Dataset: Generative AI in

Software Security through the Lens of Formal

Verification. PROMISE 2023: 33-43

• Built the formAI dataset

with 112k C programs

• Randomly selected 1k

vulnerable C programs

• Repaired 35.5% programs

• Lowest category was

arithmetic overflow (~5%)

• Highest category was array

out of bounds (~36%)

• Generic prompts (room for

improvement)

Tihanyi et al.: The FormAI Dataset: Generative AI in

Software Security through the Lens of Formal

Verification. PROMISE 2023: 33-43

ESBMC-AI Fix Code Mode (FCM) Performance

ESBMC-AI Fix Code Mode (FCM)

FCM LoC Delta 0 Examples

Train LLMs on known patterns (e.g., CWEs) to catch

bugs in real-time as code is being written in an IDE

SecureFalcon: Are We There Yet in Automated

Software Vulnerability Detection with LLMs?

https://arxiv.org/abs/2307.06616

https://arxiv.org/abs/2307.06616

Agenda

• Automated Software Testing and Verification with the

ESBMC Framework

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Automated Reasoning System for Building Trustworthy SW

and AI Systems

Vision: Automated Reasoning System for
Building Trustworthy SW and AI Systems

Source

code

Binary

code

AI code

Automated

Reasoning System

(ARS): Searching,

learning, memory

and parallelization

Vulnerability

classification

Properties

Severity

Likelihood

Remediation cost

Explainable

Behavior Correctness

Robustness

Detection Correction

Code inspection

Static Analysis

Dynamic Analysis Fault Localization

Fault Repair

Develop an automated reasoning system for safeguarding

software and AI systems against vulnerabilities in an

increasingly digital and interconnected world

The European Commission recognized our code
verification framework as an outstanding

innovation

• “We believe that your organisation's inclusion
in this initiative could open up new
opportunities for you to partner with business
or academic organisations and trigger interest
from potential customers or investors in your
innovations”

• Innovation Title: ELEGANT code verification
mechanisms;

• Market Maturity of the Innovation: Exploring

• Market Creation Potential of the innovation: High

(Real) Impact: Students and Contributors

• 5 PhD theses

• 30+ MSc dissertations

• 30+ final-year projects

• GitHub:

▪ 33 contributors

▪ 23,419 commits

▪ 272 stars

▪ 91 forks

▪ 4.3k downloads

https://github.com/esbmc/esbmc

https://github.com/esbmc/esbmc

Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• Best Tool Paper Award at SBSeg’23

• 35 awards from intl. competitions on SW verification/testing at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in C/C++ software

• Funded by the government (EPSRC, British Council, Royal Society, CAPES,

CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

• Potential spin-out about building trustworthy software and AI systems

Acknowledgements

	Slide 1
	Slide 2: How much could software errors cost your business?
	Slide 3: Objective of this talk
	Slide 4: Research Questions
	Slide 5: ESBMC: A Logic-based Verification Platform
	Slide 6: Agenda
	Slide 7: SAT solving as enabling technology
	Slide 8
	Slide 9: Bounded Model Checking (BMC)
	Slide 10: Software BMC
	Slide 11: Software BMC
	Slide 12: Software BMC
	Slide 13: Software BMC
	Slide 14: Software BMC
	Slide 15: Software BMC
	Slide 16: Software BMC
	Slide 17: Software BMC
	Slide 18: Intl. Software Verification Competition (SV-Comp 2024)
	Slide 19: From Floating-Point Programs to Neural Network Implementations
	Slide 20: FuSeBMC v4 Framework
	Slide 21: Competition on Software Testing 2024: Results of the Overall Category
	Slide 22: Ethereum Consensus Specifications
	Slide 23: ESBMC-Python Benchmark
	Slide 24
	Slide 25: WolfMQTT Verification
	Slide 26: WolfMQTT Verification
	Slide 27: Bug Report
	Slide 28
	Slide 29: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 30: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 31: Verifying Components of Arm® Confidential Computing Architecture with ESBMC
	Slide 32: Agenda
	Slide 33
	Slide 34
	Slide 35: ESBMC-AI Fix Code Mode (FCM) Performance
	Slide 36: ESBMC-AI Fix Code Mode (FCM) Performance
	Slide 37: ESBMC-AI Fix Code Mode (FCM)
	Slide 38: FCM LoC Delta 0 Examples
	Slide 39
	Slide 40: Agenda
	Slide 41: Vision: Automated Reasoning System for Building Trustworthy SW and AI Systems
	Slide 42: The European Commission recognized our code verification framework as an outstanding innovation
	Slide 43: (Real) Impact: Students and Contributors
	Slide 44: Impact: Awards and Industrial Deployment
	Slide 45: Acknowledgements

